Efficient Spectral-Element Methods for the Electronic Schrödinger Equation
نویسندگان
چکیده
Two efficient spectral-element methods, based on Legendre and Laguerre polynomials respectively, are derived for direct approximation of the electronic Schrödinger equation in one spatial dimension. Compared to existing literatures, a spectral-element approach is used to treat the singularity in nucleus-electron Coulomb potential, and with the help of Slater determinant, special basis functions are constructed to obey the antisymmetric property of the fermionic wavefunctions. Numerical tests are presented to show the efficiency and accuracy of the proposed methods.
منابع مشابه
Free and Forced Transverse Vibration Analysis of Moderately Thick Orthotropic Plates Using Spectral Finite Element Method
In the present study, a spectral finite element method is developed for free and forced transverse vibration of Levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. Levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. In the first step, the governing out-of-plane differential equations are tr...
متن کاملVibration and Stability of Axially Moving Plates by Standard and Spectral Finite Element Methods
Based on classical plate theory, standard and spectral finite element methods are extended for vibration and dynamic stability of axially moving thin plates subjected to in-plane forces. The formulation of the standard method earned through Hamilton’s principle is independent of element type. But for solving numerical examples, an isoparametric quadrilateral element is developed using Lagrange ...
متن کاملVibration and Stability of Axially Moving Plates by Standard and Spectral Finite Element Methods
Based on classical plate theory, standard and spectral finite element methods are extended for vibration and dynamic stability of axially moving thin plates subjected to in-plane forces. The formulation of the standard method earned through Hamilton’s principle is independent of element type. But for solving numerical examples, an isoparametric quadrilateral element is developed using Lagrange ...
متن کاملA time-space adaptive method for the Schrödinger equation
In this paper, we present a discretization of the time-dependent Schrödinger equation based on a Magnus–Lanczos time integrator and high-order Gauss– Lobatto finite elements in space. A truncated Galerkin orthogonality is used to obtain duality-based a posteriori error estimates that address the temporal and the spatial error separately. Based on this theory, a space-time adaptive solver for th...
متن کاملVibration of Timoshenko Beam-Soil Foundation Interaction by Using the Spectral Element Method
This article presents an analysis of free vibration of elastically supported Timoshenko beams by using the spectral element method. The governing partial differential equation is elaborated to formulate the spectral stiffness matrix. Effectively, the non classical end boundary conditions of the beam are the primordial task to calibrate the phenomenon of the Timoshenko beam-soil foundation inter...
متن کامل